Algebraic curves Solutions sheet 6

June 6, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let V, W be varieties and assume that W is affine.

- 1. Show that there is a bijection $Hom_{Var}(V,W) \simeq Hom_{k-alg}(\mathcal{O}(W),\mathcal{O}(V))$.
- 2. Show that there is a bijection $\mathcal{O}(V) \simeq Hom_{Var}(V, \mathbb{A}^1_k)$.
- 3. Show that $\mathcal{O}(\mathbb{P}^1_k) \simeq k$.
- 4. Show that $\mathcal{O}(\mathbb{P}^n_k) \simeq k$ for all $n \geq 1$.

Solution 1.

1. Let $\phi: V \to W$ be a morphism of variety. Then $\phi^*: f \mapsto f \circ \phi$ define a k-algebra morphism $\mathcal{O}(W) \to \mathcal{O}(V)$. For the reverse bijection, as W is affine, we can write $\mathcal{O}(W) = Spec\ A$, with A a finite type k-algebra. Let $\psi: A \to \mathcal{O}(V)$ We can send it to

$$F: x \in V \mapsto \mathfrak{m} := ker(f \mapsto \psi(f)(x))$$

 $f \mapsto \psi(f)(x)$ is a ring morphism $ev_x : A \to k$, so its kernel is a maximal ideal in A, hence a point of W. We have to check that this defines a morphism of varieties. It comes directly from the defintion, since for all $v \in V$, it implies that

$$ev_{F(v)} = ev_v \cdot \psi$$

and so we get a commutative diagram for all $f \in A$

$$V \xrightarrow{F} W$$

$$\downarrow f$$

$$\downarrow f$$

$$\downarrow k$$

2. Clearly from 1. we get that $Hom_{Var}(V, \mathbb{A}^1) \simeq Hom_{k-alg}(k[x], \mathcal{O}(V))$. It suffices to check that the following is a reverse bijection:

$$\mathcal{O}(V) \longrightarrow Hom_{k-alg}(k[x], \mathcal{O}(V))$$

$$f \longmapsto (x \mapsto f)$$

$$\phi(x) \longleftarrow \phi$$

- 3. Using question 2, $\mathcal{O}(\mathbb{P}^1_k) = Hom_{Var}(\mathbb{P}^1, \mathbb{A}^1)$. Call x_1 and x_2 the projective coordinates and U_i the corresponding affine open. Let $f: \mathbb{P}^1 \to \mathbb{A}^1$. Then f_{U_1} is polynomial in $\frac{x_2}{x_1}$ and f_{U_2} is polynomial in $\frac{x_1}{x_2}$, so on the intersection, f is constant. By continuity, $f \in k$.
- 4. Let $f: \mathbb{P}^n \to \mathbb{A}^1$. f can be written uniquely as a quotient of coprime homogenous form of same degree, $f = \frac{P}{Q}$. Now, if Q has positive degree, Q has a zero p (as we work over algebraically closed fields). Suppose f can is defined at p. Then there are P', Q' such that $f' = \frac{P'}{Q'}$. Hence PQ' = P'Q, by coprimality, $P \mid P'$ so P' also has a zero at p, which contradicts the assumption. So f can not be defined. Hence f is constant.

We could also use that any two points in \mathbb{P}^n lie on a \mathbb{P}^1 .

Exercise 2. Let $n \geq 1$ and $f \in k[x_1, \ldots, x_n]$.

- 1. Show that $\mathbb{A}_k^n V(f)$ is affine. What is its ring of regular functions?
- 2. Show that $\mathbb{A}_k^2 \{(0,0)\}$ is not affine. (Hint: compute the ring of regular functions).

Solution 2.

1. Let D(f) denote $\mathbb{A}^n \setminus V(f)$. We have an obvious injection of rings:

$$\mathcal{O}(V(1-Yf)) = k[x_1, \dots, x_n] \left[\frac{1}{f}\right] \longrightarrow \mathcal{O}(D(f)) \subset k(x_1, \dots, x_n)$$

Its inverse on points is:

$$V(1-Yf) \subset \mathbb{A}^{n+1} \longrightarrow D(f) \subset \mathbb{A}^n$$
$$(\overline{x_1}, \dots, \overline{x_n}, y) \longmapsto (\overline{x_1}, \dots, \overline{x_n})$$

Indeed, $y \cdot f(\overline{x}) = 1$ implies that $f(\overline{x}) \neq 0$.

Here \overline{x}_i denotes the coordinates while x_i denotes the variable in the ring of functions.

2. We can see that the ring of regular functions of $W := \mathbb{A}^2 - \{(0,0)\}$ is k[x,y], the same as for \mathbb{A}^2 , and so W is not affine, because it is clearly not isomorphic to \mathbb{A}^2 . Suppose that $f \in k[x,y]$ is invertible in $\mathcal{O}(W)$. As k is algebraically closed, the zero locus of a polynomial of degree $d \geq 1$ is at least 1-dimensional, so it can not be $\{(0,0)\}$. Thus $f \in k^*$ and $\mathcal{O}(W) = k[x,y]$.

Exercise 3. Let $\varphi: V \to W$ be a morphism of affine varieties and $\varphi^{\sharp}: \Gamma(W) \to \Gamma(V)$ the corresponding morphism of coordinate rings. Let $P \in V$ and $Q = \varphi(P)$ and consider local rings $\mathcal{O}_P(V)$, $\mathcal{O}_Q(W)$ with maximal ideals \mathfrak{m}_P , \mathfrak{m}_Q . Show that φ^{\sharp} extends uniquely to a ring homomorphism $\mathcal{O}_Q(W) \to \mathcal{O}_P(V)$ and that $\varphi^{\sharp}(\mathfrak{m}_Q) \subseteq \mathfrak{m}_P$.

Solution 3. Recall that $\mathcal{O}_Q(W) \subset k(W)$ contains regular functions $\frac{f}{g}$ on $Q \in U \subset W$, such that $g(Q) \neq 0$. Hence $\phi^{\sharp}(g)(P) = g \circ \phi(P) \neq 0$. Thus the following unique extension of ϕ^{\sharp} is well-defined:

$$\begin{array}{ccc} \mathcal{O}_Q(W) & \longrightarrow \mathcal{O}_P(V) \\ \frac{f}{g} & \longmapsto \frac{\phi^{\sharp}(f)}{\phi^{\sharp}(g)} \end{array}$$

 $\frac{f}{g} \in \mathfrak{m}_Q$ implies f(Q) = 0 implies $\phi^{\sharp}(f)(P) = 0$ so that $\phi^{\sharp}(\frac{f}{g}) \in \mathfrak{m}_P$.

Exercise 4. Let $n \ge 1$ and V a variety. We use projective coordinates x_i , $1 \le i \le n+1$ on \mathbb{P}^n_k . Suppose there exist an open cover $(U_i)_{1 \le i \le n+1}$ of V and morphisms of varieties $\varphi_i : U_i \to \{x_i \ne 0\} \subseteq \mathbb{P}^n_k$, $1 \le i \le n+1$, such

that $\forall i \neq j$, $(\varphi_i)_{\restriction U_i \cap U_j} = (\varphi_j)_{\restriction U_i \cap U_j}$. Show that there exists a unique morphism $\varphi : V \to \mathbb{P}^n_k$ such that $\varphi_{\restriction U_i} = \varphi_i$. We say that φ is obtained by *glueing* the φ_i , $1 \leq i \leq n+1$.

Solution 4. We can clearly define

$$\phi(x) := \phi_i(x)$$

where $x \in V$ is such that $x \in U_i$. It is well-defined. We need to show that it is a morphism. Let $f \in \mathcal{O}_{\mathbb{P}^n}(W)$, a regular function on a proper open $W \subset \mathbb{P}^n$. Then define $W_i := W \cap \{x_i \neq 0\}$. On each $\phi^{-1}(W_i) \subseteq U_i$, we have $f \circ \phi = f \circ \phi_i$ is regular. A function is regular if it is regular at all points of V. For a fixed $P \in V$, $f \circ \phi$ is regular on at least one open $P \in W_i \subseteq W$. Hence $f \circ \phi$ is regular so ϕ is a morphism.

Exercise 5. Let $f \in k[x_1, x_2, x_3]$ an irreducible form of degree 2 and consider $V_P(f) \subseteq \mathbb{P}^2_k$.

- 1. Show that, up to a linear change of coordinates, we can assume that $f = x_2^2 x_1x_3$. (Hint: remember we classified similar subvarieties of \mathbb{A}^2_k).
- 2. Show that the map:

$$\begin{array}{ccc} \mathbb{P}^1_k & \to & \mathbb{P}^2_k \\ (s:t) & \mapsto & (s^2:st:t^2) \end{array}$$

induces an isomorphism $\mathbb{P}^1_k \simeq V_P(f)$. (Hint: take a look locally in the standard affine opens of projective space and use exercise 4).

Solution 5.

1. Consider g(x,y) := f(1,x,y): $\mathbb{A}^2 \to k$. Then $V(g) \simeq V(f) \cap U_0$, with $U_0 = \{x_0 \neq 0\} \simeq \mathbb{A}^2$ as usual. Note that V(f) is irreducible. By a previous exercise, we can use linear changes of coordinates to write

$$g(x,y) = x^2 - y$$

or

$$g(x,y) = 1 - xy$$

The projectivisation is then $x^2 - yz$ or $z^2 - xy$, and it is equal to f. We get the result by re-naming the variables if necessary.

2. We have isomorphisms on affine charts $U_0, U_1 \subset \mathbb{P}^1$, given by

$$U_0 \longrightarrow V_P(f) \cap U_0$$

$$\frac{x_1}{x_0} \mapsto \left(\frac{x_1}{x_0}, \left(\frac{x_1}{x_0}\right)^2\right)$$

and

$$U_1 \longrightarrow V_P(f) \cap U_2$$

$$\frac{x_0}{x_1} \mapsto \left(\left(\frac{x_0}{x_1} \right)^2, \frac{x_0}{x_1} \right)$$

They glue on $U_0 \cap U_2 \subset \mathbb{P}^2$.